
ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 1

ASC X12

- WORKING DRAFT -

ASC X12

X12.71
Context Inspired
Component
Architecture (CICA)

Design Rules

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 2

ASC X12

- WORKING DRAFT -

Copyright © 2003 Data Interchange Standards Association

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 3

ASC X12

- WORKING DRAFT -

TABLE OF CONTENTS

Background ... 8

Part I: Context Inspired Component Architecture .. 9

1 Context Inspired Component Architecture .. 9
1.1 CICA Introduction .. 9
1.2 CICA 101... 9

2 General Information ... 14
2.1 Business Process.. 14
2.2 Abstract Superclasses, Concrete Subclasses and Usages .. 15

2.2.1 Background .. 15
2.2.2 Abstract Superclasses ... 16

2.3 Invoice Example .. 18
2.4 Structured Rules Overview.. 19

2.4.1 FORM:.. 19
2.4.2 FIT: ... 19
2.4.3 FUNCTION:.. 19

2.5 Detailed Structure Rules ... 20
2.5.1 20

2.5.1.1 Condition 1:... 20
2.5.1.2 Condition 2:... 20
2.5.1.3 Condition 3:... 20
2.5.1.4 Condition 4:... 20
2.5.1.5 Condition 5:... 21
2.5.1.6 Condition 6:... 21
2.5.1.7 Condition 7:... 21

3 General Rules ... 22
3.1 Terminology... 22

3.1.1 MUST ... 22
3.1.2 MUST NOT... 22
3.1.3 SHOULD .. 22
3.1.4 SHOULD NOT.. 22
3.1.5 MAY.. 22

3.2 General Rules ... 22
3.2.1 Requirements Flag ... 22
3.2.2 Minimum Occurs (MinOccurs) values MUST be a non-negative integer equal or

greater than zero. ... 23
3.2.3 Maximum Occurs (MaxOccurs) values MUST be either a positive integer greater than

zero or a positive infinity represented by “Unbounded." .. 23
3.2.4 Names, XML Names, and Usage Names, and XML Usage Names MUST comply

with naming conventions specified in X12.7. ... 23
3.2.5 Content Restriction Flag... 23
3.2.6 Block Type Flag.. 23
3.2.7 Identification Characteristic Flag .. 24
3.2.8 Abstract Requirements Flag... 24
3.2.9 Abstract Repeatability Flag. ... 24
3.2.10 Slot Detail Flag ... 25
3.2.11 Context Category ... 25

3.2.11.1 The value of the context category MUST be one of the following values:25
3.2.11.2 Context Category Identification .. 25
3.2.11.3 Context Category Identifier Value... 26

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 4

ASC X12

- WORKING DRAFT -

Part II: CICA Constructs ... 27

4 Core Component Type [CCT] .. 27
4.1 CCT – Definition .. 27
4.2 CCT – Content .. 27
4.3 CCT – Use... 29
4.4 CCT – Examples ... 29

5 Primitives .. 31
5.1 Primitive – Definition.. 31
5.2 Primitive – Content .. 31
5.3 Primitive – Use .. 31
5.4 Primitive – Examples... 31
5.5 Primitive – Design Rules ... 31

5.5.1 Semantic Rules: ... 31
5.5.2 Primitive Superclass Property Rules:... 32

5.5.2.1 Identifier .. 32
5.5.2.2 Primitive Superclass Name .. 32
5.5.2.3 Primitive Description ... 32
5.5.2.4 Primitive Core Component Type .. 32

5.5.3 Primitive Subclass Property Rules: .. 32
5.5.3.1 Primitive Subclass Name.. 32
5.5.3.2 Content Component Restriction ... 32
5.5.3.3 Content Component Restriction Value ... 32

5.5.4 Primitive Usage Rules.. 32

6 Components ... 33
6.1 Component – Definition... 33
6.2 Component – Content ... 33
6.3 Component – Use ... 33
6.4 Component – Examples.. 33
6.5 Component – Design Rules .. 34

6.5.1 Component Semantic Rules .. 34
6.5.2 Component Member Semantic Rules .. 34
6.5.3 Component Superclass Property Rules... 35

6.5.3.1 Component Superclass Name.. 35
6.5.3.2 Component Description .. 35

6.5.4 Component Member Properties ... 35
6.5.4.1 Component Member Usage Name... 35
6.5.4.2 Primitive Name ... 35

6.5.5 Subclass Component Properties.. 35
6.5.5.1 Component Subclass Name... 35
6.5.5.2 Component Subclass XML Name .. 35

6.5.6 Subclass Component Member Properties ... 35
6.5.6.1 Primitive Subclass Name.. 35
6.5.6.2 Requirements Flag ... 35
6.5.6.3 Minimum Occurs... 36
6.5.6.4 Maximum Occurs.. 36
6.5.6.5 Content Restriction Flag ... 36
6.5.6.6 Primitive Subclass XML Name ... 36

7 Blocks ... 36
7.1 Block - Definition ... 36
7.2 Block – Content ... 36
7.3 Block – Use ... 36
7.4 Block – Examples.. 37
7.5 Block – Properties ... 38

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 5

ASC X12

- WORKING DRAFT -

7.5.1 Block Semantic Rules .. 38
7.5.2 Block Member Semantic Rules .. 38
7.5.3 Block Property Rules, Abstract super class ... 39

7.5.3.1 BlockName ... 39
7.5.3.2 BlockXMLName.. 39
7.5.3.3 BlockType ... 39
7.5.3.4 BlockDescription ... 39

7.5.4 Each Block Member Property Rules, Abstract Superclass: 39
7.5.4.1 Position ... 39
7.5.4.2 Name .. 39
7.5.4.3 UsageName.. 39
7.5.4.4 XMLUsageName .. 39
7.5.4.5 Use.. 40

7.5.5 Block Subclass Properties ... 40
7.5.6 Block Member Subclass Properties ... 40

8 Assemblies ... 42
8.1 Assembly - Definition... 42
8.2 Assembly – Content .. 42
8.3 Assembly – Use .. 42
8.4 Assembly - Examples.. 42

8.4.1 Assembly Semantic Design Rules ... 43
8.4.2 An Assembly Member Semantic Rules.. 43
8.4.3 Assembly Superclass Properties ... 45

8.4.3.1 AssemblyName... 45
8.4.3.2 AssemblyXMLName ... 45
8.4.3.3 AssemblyDescription .. 45

8.4.4 Assembly Superclass Member Properties ... 45
8.4.4.1 Name .. 45
8.4.4.2 UsageName.. 45
8.4.4.3 XMLUsageName .. 45
8.4.4.4 Assembly Type ... 45

8.4.5 Assembly Subclass Properties... 46
8.4.6 Assembly Subclass Member Properties .. 46
8.4.7 Assembly Design Guidelines ... 46

9 Templates ... 48
9.1 Definition.. 48
9.2 Content .. 48
9.3 Use .. 48
9.4 Examples... 49
9.5 Design Rules - Template... 49

9.5.1 Template Semantic Design Rules.. 49
9.5.2 Template Member Semantic Design Rules ... 50
9.5.3 Semantic Design Rules.. 50
9.5.4 Superclass Properties Design Rules.. 51

9.5.4.1 TemplateName ... 51
9.5.4.2 TemplateXMLName.. 51
9.5.4.3 TemplateDescription... 51
9.5.4.4 TemplateFamily .. 51
9.5.4.5 BusinessProcess .. 51
9.5.4.6 BusinessProcessFamily.. 51
9.5.4.7 BusinessSubprocess .. 51
9.5.4.8 BusinessSubprocessFamily.. 52
9.5.4.9 TriggeringEventDescription .. 52
9.5.4.10 ResponsibleSubCommittee .. 52

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 6

ASC X12

- WORKING DRAFT -

9.5.4.11 Context Category Value List ... 52
9.5.5 Superclass Member Properties Design Rules ... 52

9.5.5.1 SlotName .. 52
9.5.5.2 SlotXMLName... 52
9.5.5.3 SlotPurpose .. 52
9.5.5.4 SlotDetailFlag ... 52
9.5.5.5 Abstract requirements flag.. 53
9.5.5.6 Abstract repeatability flag ... 53
9.5.5.7 Context category value list ... 53
9.5.5.8 SlotModuleLinkage ... 53

10 Modules .. 55
10.1 Module - Definition .. 55
10.2 Module – Content .. 55
10.3 Modules - Use ... 55
10.4 Modules - Examples.. 55

10.4.1 Module – Design Rules .. 56
10.4.2 Semantic Design Rules.. 56

10.4.2.1 A Module... 56
10.4.2.2 A Module Member .. 56

10.4.3 Syntactic Design Rules .. 57
10.4.3.1 ModuleName. ... 57
10.4.3.2 ModuleDescription. ... 57
10.4.3.3 Module Type ... 57
10.4.3.4 ResponsibleSubCommittee. ... 57
10.4.3.5 ContextCategoryValue.. 57
10.4.3.6 UsageName.. 57
10.4.3.7 AssemblyorBlock. ... 58
10.4.3.8 RequirementsFlag. ... 58
10.4.3.9 MinOccurs... 58
10.4.3.10 MaxOccurs.. 58
10.4.3.11 Content restriction flag.. 58

11 Documents ... 59
11.1 Definition.. 59
11.2 Content .. 59
11.3 Use .. 59
11.4 Examples... 59
11.5 Design Rules – Document .. 59

11.5.1 Semantic Design Rules.. 59
11.5.2 Syntactic Design Rules .. 60

11.5.2.1 DocumentName.. 60
11.5.2.2 DocumentXMLName. ... 60
11.5.2.3 DocumentDescription. .. 60
11.5.2.4 DetailMaxOccurs. ... 60
11.5.2.5 ResponsibleSubCommittee. ... 60
11.5.2.6 ContextCategoryValue.. 61
11.5.2.7 DocumentSlot. .. 61
11.5.2.8 ModuleSlotXMLName... 61
11.5.2.9 ModuleName. ... 61
11.5.2.10 ModuleUsageName. ... 61
11.5.2.11 ContextCategory... 62
11.5.2.12 ContextCategoryValue.. 62
11.5.2.13 ReqDesignator.. 62
11.5.2.14 MinOccurs... 62
11.5.2.15 MaxOccurs.. 62

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 7

ASC X12

- WORKING DRAFT -

APPENDIX A: CORE COMPONENTS CONTEXT CATEGORIES 64

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 8

ASC X12

- WORKING DRAFT -

DESIGN RULES

Background
These design rules have been developed to assist in establishing uniformity in X12 XML business
document development and maintenance efforts. The design rules are to be used as stated. There shall
be no deviation from them, with all new development and maintenance expected to utilize them.

These design rules uses as its basis the philosophical foundation and general design principles forwarded
in the published technical report, ASC X12 Reference Model: Context Inspired Component Architecture
(CICA).

This document is intended to be flexible as new situations arise that require new rules or guidelines, or
modifications to existing ones. Therefore, individuals involved with XML business document development
and maintenance are urged to keep the latest edition of the Design Rules document handy for reference.
Modifications and suggestions for improvement of this guideline are welcome and should be sent to Task
Group 1 of Subcommittee J, Technical Assessment, care of:

Secretariat, ASC X12
Data Interchange Standards Association, Inc.
7600 Leesburg Pike • Suite 430
Falls Church, VA 22043-2004
(703) 970-4480

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 9

ASC X12

- WORKING DRAFT -

Part I: Context Inspired Component Architecture

1 Context Inspired Component Architecture

1.1 CICA Introduction
The Context Inspired Component Architecture (CICA) offers a method for building electronic
business messages using XML. CICA takes the lessons from two decades of EDI
experience, and updates that experience to take advantage of XML’s flexibility.

Like EDI, CICA presents a standard structure for business messages, and adds in the
implementation details required by different industries. However, CICA also allows
organizations to apply the same methods for messages used across industries. Thus
organizations can relate the terms used in their own industries to potential trading partners
in other lines of business. To achieve these somewhat contradictory objectives (consistent
structure, with flexibility) presents technical challenges. CICA needs to manage a much
larger quantity of information in various contexts, while maintaining a consistent approach to
encourage interoperability across those contexts.

The purpose of this section is to provide an introduction to the CICA. It will explain the most
basic and important concepts behind the framework and its components. In an attempt to
convey the core concepts, we may at times overly simplify some of the explanations.
However, with a strong grounding in the core concepts, a more detailed and complex level
of understanding can ultimately be achieved.

The general framework of the CICA can be simply stated. A template is created for a
business process. A template consists of slots. The slots may be filled with a number of
different modules. Modules may be broken down into a number of sections including
assemblies, blocks, components and primitives. A unique instance of the completed
framework is called a document.

1.2 CICA 101
In order to illustrate some of the concepts and relationships, we will use an analogy that
many people are familiar with, a restaurant menu.

Many industries face the need to organize and present information in a structure, while
allowing for maximum flexibility. In a restaurant, this need expresses itself in creating a
menu for its customers. Almost every restaurant, from the corner diner to the gourmet
establishment, offers a variety of items. The issue facing the restaurant is how to organize
this list of items to be meaningful to the customers. The restaurant could organize food
items in a number of different ways: alphabetically, by the main ingredients, by the type of
dish offered, by the meal in which they are offered, or the course within the meal.

The restaurant might begin by breaking down its offerings into three distinct menus, one
each for breakfast, lunch, and dinner. In the CICA context, these menus are analogous to
templates. They are similar in that they convey the food offerings to the customer, but are
different as they reflect the food preferences generally associated with the different times of
day (Figure 1).

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 10

ASC X12

- WORKING DRAFT -

Figure 1. Basic Menu Structure

Within each menu, one can identify different courses. The courses might include an
appetizer, main dish, dessert, and beverage. In the CICA context, slots are analogous to
the courses reflected on the menu: a slot for appetizer, main dish, dessert, beverage, etc.
Some of these may be shared across the different menus. For example, the both the dinner
template and the breakfast would probably have a slot for main dish, where as the breakfast
template would probably not have a dessert slot. Both may have a beverage slot (Figure 2).

Figure 2. Menu Organization

Breakfast

Menu

Dinner

Menu

Lunch

Menu

…

Dinner

Menu

 appe-

tizers

drinks

Lunch

Menu

appe-

tizers

drinks

burgersmain

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 11

ASC X12

- WORKING DRAFT -

Types of dishes or course selection within a meal can include meat, fish, vegetarian main
dishes or hot or cold appetizers. Under each of these categories then come the individual
selections. The individual dishes that we use to fill the main dish slot are similar to modules.
Each course slot may be filled with a number of modules that are appropriate to the menu
template.

But the breakdowns do not end at the individual selections. The selections will generally
have prices associated with them as well as more detailed information about the selection,
for example a restaurant may offer appetizers, soup, vegetables, and a salad with the main
course. In other establishments, patrons can specify the type of preparation or amount of
seasoning they prefer, or they can indicate substitutes if on a restricted diet. Even on a side
dish, the choices can proliferate, for instance selecting the type of dressing on a salad
(Figure 3).

Lunch

selections

… chowder
 shrimp chili

 Soups

Dinner

 burger

 drinks coffee

shrimp

scampi

… cheese veggie

every -

thing

Appetizer

drinks

 entre

orange
duck

meat

loaf

Figure 3. Reusing menu selections

The server, in taking the order will list the selections chosen by the customer, and create an
individual order. In many cases, the different choices can be mixed from one order to
another, thus orders will have different appetizers, soups, salads, main course, and
beverages, or just soup and salad, and a main course, or just soup and salad. The idea is
to build a meal with interchangeable menu items or components (Figure 4, next page).

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 12

ASC X12

- WORKING DRAFT -

Figure 4. Creating Customer orders with reusable items

While writing a restaurant or food service menu may seem light years away from building
electronic business messages, many of the same principles apply:

• A disciplined underlying structure – menus for all of the meals follow the same basic
hierarchy, making it easier to generate new menus

• Encouragement of item reuse – e.g., the side-salad with dinner is also offered at lunch;
the cooks can use the same ingredients and methods, thus simplifying their work

• A structured approach to reuse – cooks planning the meals know in advance the extent of
reuse available, and servers know the limits of substitutions; for example, breakfast and
lunch generally have fewer courses than dinner, limiting the items available at the earlier
meals

With electronic business messages, these same principles can achieve comparable benefits
in organization and simplification. A disciplined underlying structure provides a basic
hierarchy for electronic business messages, much like it does for menu planners. The

Lunch selections

…
Chowder Shri

chili

Dinner

burgerdrinkscoffee shrimp
scampi

…

cheese veggie

every-

hi

drinksentre

orange

d k

 meat

l f

chowde r shrimpOrder 1 Order 2

O
R

D

E
R

S

…

Soup

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 13

ASC X12

- WORKING DRAFT -

structure provides the cook with a way of organizing menus, but does not limit the creativity
of the final product. Likewise with e-business messages, having an underlying structure
offers a way for trading partners to consistently organize the data they exchange, but does
not limit the kinds of business that the trading partners can undertake.

The reuse of items enables both the menu planners and e-business message architect to
simplify their efforts and make better use of their resources. If the food service planners can
provide to customers a wide selection of items by offering variations on a basic set of
ingredients, they meet the customers’ needs for variety while simplifying their work and
probably making better use of their time. With e-business messages, the use of
interchangeable data items offers a way of making maximum use of IT resources and
simplifying the message contents. The CICA architecture builds electronic business
messages by choosing from the interchangeable or reusable items and combining them at
different levels.

In building business messages, the message uses a process analogous to the restaurant
menu. The message collects components, important pieces of information, needed by the
trading partner to perform actions beneficial to the parties to the transaction. In most cases,
the industry in which the companies operate will have processes and terminology defined,
much like the way the business environment of a food service defines the meals it serves: a
fancy expense-account restaurant will not likely serve breakfast, for example.

One can draw parallels between the hierarchy in restaurant menus and the CICA
architecture:

Menu hierarchy CICA architecture

Customer order (baked salmon, ranch dressing on
salad)

Document (event invoice goods)

Menu (lunch menu) Template (event invoice)

Menu category (lunch, main course) Template slot (Line Product)

Menu selection (baked salmon, includes side salad) Module (Catalog Goods)

Dish combination (baked salmon plus side salad) Assembly (Commodity Goods)

Completed dish (baked salmon) Block (Product)

Food item (salmon) Component (Product ID)

Item ingredient (dressing on salad) Primitive (ID Number Type)

In both cases, the structure defines an overall hierarchy for the operators to organize their
menus on one hand or goods invoice on the other. The interchangeable parts make it
possible to reuse items on different menus or in other business messages. A company
could use the unit price block, for example, in various messages, such as quotation or
purchase order, as well as invoice.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 14

ASC X12

- WORKING DRAFT -

2 General Information
The information in this section applies to the entire document, and is placed in this section to assist
in the general overview. The information may repeat in subsequent sections.

2.1 Business Process
In CICA, the use of ‘business process’ is used in the most general sense of the term. In this
context, business processes are general from two different perspectives. Business
processes are both industry independent and independent of specific message flows.
Business processes are bigger than a message, that is, completion of a sequence of steps
is required to constitute a business exchange. This does not, however, require that a
business process include multiple business documents, it simply acknowledges the fact that
some business exchanges use a combination of external mechanisms with ‘silence equaling
acceptance’ an understood part of the business process.

In this context, business processes refer to ‘door-to-door’ processes limited to the public or
exposed portions of the process external to the organization’s firewall, if you will. When an
organization receives a request, it might carry out any number of internal steps to
determine, for instance, whether it wants to do business with at trading partner, or whether it
can do business with that trading partner. The steps an organization takes to make such
decisions are internal and proprietary to the organization often resulting in competitive
advantage. These internal steps are not considered within the scope of the CICA definition
for business process. Of course, once a decision has been made, the organization’s
response as to the request is very much a part of the business process.

This leads to the balance between how general and how specific. In other words, when are
two business processes ‘the same’ and when are they ‘different. The question is illustrated
in the following set of messages.

O rder

O rder A ck

O rder C hange

O rder C hange A ck

From this small set of messages, several specific sequences can be produced, as follows.

1. Order, Silent Ack, done

2. Order, Order Ack, done

3. Order, Order Change, done

4. Order, Order Ack, Order Change, Order Change Ack

As illustrated above, even when there are a variety of sequences that can be followed it
does not necessarily represent a different order process. Conversely, having the same
sequence of messages does not imply the same business process, for example a situation
with orders between a production supplier and its customers versus casual orders between
trading partners without a prior business relationship. So, where does that leave us? A set
sequence of messages does not guarantee us a unique business process action. A
different sequence of messages does not guarantee us that a message is different. So,
what does? A set of indicators,

• Pre conditions/state

• Trigger Event

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 15

ASC X12

- WORKING DRAFT -

• Post conditions/state

together act as indicators determining whether a message is unique, or the same as other
business process usages. This test helps determine the set of UNIQUE messages, based
on business process. For each of these, in CICA, Templates are created that is, they are
specific to a set of key indicators that are used to determine use/uniqueness.

This is a significant departure from X12 current EDI practices. The X12 philosophy is to
have a single transaction set for each business purpose or action for example a single
Invoice. While in practice this is not actually done, it remains the prevailing X12 philosophy.
CICA recognizes the value of and has as its objective to utilize a single means to fulfill a
single purpose. Dissimilarities create complexity, which CICA is equally committed to
minimize.

Two primary factors lead to complexity in X12’s EDI Transaction Sets:

1. Supporting the needs for multiple business processes within the same Business
Document.

General business functions, such as invoicing, are perceived by many to be the same
business process – an invoice is an invoice. This is not necessarily the case with the
differences in business circumstances associated with the generation of one invoice can be
different than that of another, affecting the high level organization. Having to support dual
business processes with the use of a single business document leads to ambiguous
business message design often resulting in more than one position to place the same
information. This resulting complexity is dealt with by CICA in the following ways:

a. Each business process different need for a different high level organization gets a
different Template

b. Templates only contain Slots, and loose Modules are constructed to fit into those
Slots. This allows the same Module to be used in multiple Templates, minimizing the
cost of having Templates. This design is dramatically different for current EDI
practices.

2. Differences in information needs due to the differences in products and/or services that
are the subject of the business document.

CICA has an elegant solution for this, allowing support for details sufficient to meet the
needs of implementation.

a. Modules can be built out of reusable constructs, which can be fully customized to
meet the needs of each user.

b. Modules coexist within CICA in that multiple Modules are linked to the same Slot,
allowing for peer Modules to be associated with the same role or purpose.

c. This granularity approach further provide for the natural information flow through a
business process, where the same information appears within multiple messages
within the process. The same Module therefore can be used in many business
documents.

2.2 Abstract Superclasses, Concrete Subclasses and Usages

2.2.1 Background
Important to the X12 community is to maximize the efficiency of reuse. This was a
critical design goal in CICA. One of the mechanisms in CICA to support this
design goal is the use of layering to make optimum use of reuse. One such case
is the use of Abstract Superclasses and Concrete Subclasses.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 16

ASC X12

- WORKING DRAFT -

The concept is simple. CICA include the set of details necessary for
implementation, such as Minimum Length, Maximum Length, Requirement
Designation, etc. For the same basic structure, these details can vary
significantly, determined by implementation needs. Abstract Superclasses with
Concrete Subclasses allow CICA to manage both levels of requirements.

2.2.2 Abstract Superclasses
Abstract Superclasses embody the structure of the construct. For example, a
Person Party Block Abstract Superclass might be as shown below.

Abstract Super Class

ASClass Person Party Block

 PersonName Component

 Usage Primitive

 FirstName NameText

 MiddleName NameText

 LastName NameText

For that Abstract Superclass, one or more Concrete Subclasses will be specified.
There might be a Concrete Subclass with a set of restrictive properties specified,
as shown below:

Concrete Subclass

ASClass Person Party Block,
CSClass Person Party Block 01

PersonName Component

 Usage Primitive Min Max Req

 FirstName NameText 1 20 O

 MiddleName NameText 1 1 O

 LastName NameText 1 60 M

Now, with the full construction specified [all of the elements, plus the restrictive
details], the Block is available to be used in a Module.

When the Block is used, a usage name is specified. One or more usages can
reuse the same concrete subclass. Examples could be as follows:

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 17

ASC X12

- WORKING DRAFT -

Usage

Usage:
Patient

 ASClass Person Party Block

 PersonName Component

 Usage Primitive Min Max Req

 FirstName NameText 1 20 O

 MiddleName NameText 1 1 O

 LastName NameText 1 60 M

Usage:
Criminal

 ASClass Person Party Block

 PersonName Component

 Usage Primitive Min Max Req

 FirstName NameText 1 20 O

 MiddleName NameText 1 1 O

 LastName NameText 1 60 M

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 18

ASC X12

- WORKING DRAFT -

2.3 Invoice Example
For the purposes of this document, a complete, top to bottom example has been
constructed in order to illustrate the concepts. Note that each box is numbered in order to
easily refer to subsection within the example.

Figure 5. Example

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 19

ASC X12

- WORKING DRAFT -

2.4 Structured Rules Overview
There are three tests that can be applied when comparing two candidate information
constructs to determine the level to which they are related. These are Form, Fit and
Function, and they are taken from the Parts world where they are used to determine when a
new part number needs to be assigned. These tests, while the same for each CICA
construct, have slightly different implications depending on the semantic abstraction of the
construct. Modules, the most semantically specific construct, are more sensitive to purpose
and usage and a little less impacted by structure. In contrast, Blocks contain abstract
semantics and are affected more by structure. These details affect how to apply these tests
and the resulting rules. The general concepts are presented below.

For eBusiness considerations, Form, Fit and Function are defined as follows:

2.4.1 FORM:
Physical – the structure, contents and components of the information structures
being specified. For example, parts have names and so do people. People have
first, middle and last names, whereas a part has a single name, part name. The
difference in Form makes these two types of names different. In contrast, you
might have a Student First Name and Student Last Name, compared with a
Patient First Name and Patient Last Name. Form-wise, these two examples are
the same.

2.4.2 FIT:
Identity-Meaning-Specificity – Two organizations or industries that share the
common element named Part Number have reason to believe that there is some
commonality. Sometimes two uses of an identically named item do not provide
the same level of specificity, and therefore these items are not the same thing. In
ebXML, a case using a Vehicle Identification Number, “VIN” was used. Different
organizations use the VIN, but they may be referring to a different subset of sub-
components. Each subsection of the component parts of the VIN, for the same
vehicle, is different information. Can all of these different subsets of the same
base number all be called VIN – no! Other examples are found with Part Number,
with different levels of specificity found with a construct called Part Number. For
these to be considered the same, they must specify the same level of specificity.

2.4.3 FUNCTION:
Purpose or how used. – When comparing two information constructs, such as
Product, there is a common purpose or usage – which motivates treating them as
‘the same’, even though the detail used to specify various Products can vary
widely. In some cases, the various Product descriptions are similar in form, but in
many instances, this is not the case. Efforts to merge dissimilar definitions results
in ambiguity, which later needs to be disambiguated. In the CICA architecture,
through the use of abstract layers and links, these Functionally-related constructs
are associated, without imposing ambiguous merging. The product specification
for a Widget is dramatically different from the product specification for Visiting
Healthcare services.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 20

ASC X12

- WORKING DRAFT -

2.5 Detailed Structure Rules

2.5.1
The levels of equality that are true determines how closely related two information
constructs are. Consider the following:

2.5.1.1 Condition 1:
FORM = YES

FIT = YES

FUNCTION = YES

When all three tests are true, then with 100% certainty we can determine that the
two are the same thing, that is, the constructs are semantically equal. Examples
of this situation are Shipper, Seller, or Supplier. These are different industry-
specific terms for a semantically equivalent party playing a role. Frequently the
descriptive details are exactly the same; and when that case is true, they are
semantic equals in every sense.

2.5.1.2 Condition 2:
FORM = NO

FIT = NO

FUNCTION = YES

When equality is based on function alone, the two information constructs appear
below a common parent structure. For example, in the travel industry you have
rooms in hotels and passenger seats on flights. Although they are specified with
different data elements and are called different things, they are used in the same
manner in a business process/message. Thus, the two appear beneath a
common parent [at some level], possibly human service products.

2.5.1.3 Condition 3:
FORM = YES

FIT = NO

FUNCTION = NO

This case is very common in EDI today, and is well supported. The X12 N1 loop
specifies the name, ID and address of any party, person or organization. The
fundamental difference is that in the CICA architecture, Blocks are specified for the
various data arrangements [different where a party is an individual versus an
organization]. Further, this is independent of whether the construct can represent
many purposes, which is the expected case. Therefore, in terms of Blocks, it is
expected to have a single block [Party with First, Middle and Last Name] used for
many specific parties: Passenger, Patient, or Student.

2.5.1.4 Condition 4:
FORM = NO

FIT = YES

FUNCTION = NO

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 21

ASC X12

- WORKING DRAFT -

This is the case where an information construct serves the same semantics in two
different settings/business conditions, but it is used differently and has different
components.

2.5.1.5 Condition 5:
FORM = YES

FIT = NO

FUNCTION = YES

In the automotive industry, Part Number is used to specify the desired product.

Manufacturer A has a significant digit part number which is really a composite of
several identifiers: base + change number + color number + location on vehicle +
etc.

Manufacturer B and others have a part number too, but it refers only to the base.
Separate additional values are required which include: change number, color
number, location on vehicle, etc.

Both of these are related in that they are used to specify THE part, but they are
NOT semantically equal. They do not provide the same level of specificity.
Therefore, although they are used for the same base purpose, they cannot be
used interchangeably and therefore, they are not the same.

2.5.1.6 Condition 6:
FORM = YES

FIT = YES

FUNCTION = NO

This case happens primarily when multiple business processes are involved.
Consider a scenario where a Doctor is treating Patients versus a scenario of a
business process where a Clinic is communicating its Assets – its staff. In both
cases the form and fit are the same, but the function is different. It is unclear what
structural implications this case has.

2.5.1.7 Condition 7:
FORM = NO

FIT = YES

FUNCTION = YES

In this case there, is a difference in form, as is the case with Person Name versus
Organization Name. Both cases are serving the function to specify the Party. Last
Name does not equal Organization Name, because they don’t deliver the same
level of precision. In order to achieve the same level of “Fit”, it is Organization
Name = Last Name + Middle Name + First Name. Fit ensures semantic equality.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 22

ASC X12

- WORKING DRAFT -

3 General Rules

3.1 Terminology
The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD
NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to
be interpreted as described in [RFC2119] as quoted here:

NOTE:
The emphasis of these words is influenced by the requirement level of the document in
which they are used.

3.1.1 MUST
This word, or the terms "REQUIRED" or "SHALL", mean that the definition is an
absolute requirement of the specification.

3.1.2 MUST NOT
This phrase, or the phrase "SHALL NOT", mean that the definition is an absolute
prohibition of the specification.

3.1.3 SHOULD
This word, or the adjective "RECOMMENDED", mean that there may exist valid
reasons in particular circumstances to ignore a particular item, but the full
implications must be understood and carefully weighed before choosing a different
course.

3.1.4 SHOULD NOT
This phrase, or the phrase "NOT RECOMMENDED" mean that there may exist
valid reasons in particular circumstances when the particular behavior is
acceptable or even useful, but the full implications should be understood and the
case carefully weighed before implementing any behavior described with this
label.

3.1.5 MAY
This word, or the adjective "OPTIONAL", mean that an item is truly optional. One
vendor may choose to include the item because a particular marketplace requires
it or because the vendor feels that it enhances the product while another vendor
may omit the same item. An implementation, which does not include a particular
option, MUST be prepared to interoperate with another implementation, which
does include the option, though perhaps with reduced functionality. In the same
vein an implementation, which does include a particular option, MUST be prepared
to interoperate with another implementation, which does not include the option
(except, of course, for the feature the option provides.)

3.2 General Rules

3.2.1 Requirements Flag
The requirements flag indicates that the presence of the member within its parent
entity is one of mandatory, optional, or not used.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 23

ASC X12

- WORKING DRAFT -

The requirements flag MUST have one of the following values:

M = Mandatory, the member MUST be present

O = Optional, the member MAY be present

N = Not Used, the member is not used in a particular instance

The value of the requirements flag MUST be consistent with the min occurs.

If the value of the requirements flag is mandatory (M) then the value of
the min occurs MUST be one or more.

If the value of the requirements flag is optional (O) then the value of the
min occurs may be 0 or more.

The requirements flag MUST be used on the members of the concrete subclasses
component-subclass, block-subclass, assembly-subclass, and module.

3.2.2 Minimum Occurs (MinOccurs) values MUST be a non-negative
integer equal or greater than zero.
The min occurs MUST be used on the members of the concrete subclasses
component-subclass, block-subclass, assembly-subclass, and module.

3.2.3 Maximum Occurs (MaxOccurs) values MUST be either a
positive integer greater than zero or a positive infinity
represented by “Unbounded."
The max occurs MUST be used on the members of the concrete subclasses
component-subclass, block-subclass, assembly-subclass, and module.

3.2.4 Names, XML Names, and Usage Names, and XML Usage Names
MUST comply with naming conventions specified in X12.7.

3.2.5 Content Restriction Flag
[Editor’s Note: An example would be helpful here]

The content restriction flag identifies that the member is part of a unique subset of
the parent entity where the subset members share a common content restriction.
A parent entity MUST have no more than one content-restricted subset from the
set of its members.

If there is no content restriction, the content restriction flag MAY have no value,

If there is content restriction, the content restriction flag MUST have one of the
following values:

X = Exclusive, one and only one member of the subset MUST be present

A = Inclusive, at least one of one member of the subset MAY be present

The value of the content restriction flag MUST be consistent with the value of the
requirements flag. If there is a content restriction, the requirements flag MUST
indicate the member is optional.

3.2.6 Block Type Flag
The block type flag Identifies the type of block.

The block type flag MUST have one of the following values:

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 24

ASC X12

- WORKING DRAFT -

P = Party

L = Location

E = Event

R = Resource

The block flag MUST be used only on the abstract superclass block. It is not used
with any other structure.

3.2.7 Identification Characteristic Flag
The identification characteristic flag identifies the nature of a block member.

The values for the identification characteristic flag MUST be one of the following:

I = Identification

C = Characteristic

The identification characteristic flag MUST be used only on the members of the
abstract superclass block.

3.2.8 Abstract Requirements Flag
The abstract requirements flag indicates that the presence of the member within
its parent entity is either mandatory or optional.

The abstract requirements flag MUST have one of the following values:

M = Mandatory, the member MUST be present

O = Optional, the member MAY be present

The value of the abstract requirements flag MUST be consistent with the min
occurs.

If the value of the abstract requirements flag is mandatory (M) then the
value of the min occurs MUST be greater than one.

If the value of the min occurs is equal to zero, then the value of the
abstract requirements flag MUST be optional (O).

The abstract requirement flag MUST be used only on the members of the abstract
superclass template.

3.2.9 Abstract Repeatability Flag.
The abstract repeatability flag indicates that the member may be present one or
multiple times.

The value of the abstract repeatability flag MUST be one of the following values:

S = Singular, the member MUST appear once and only once.

M = Multiple, the member MAY appear one or more times

The value of the abstract repeatability flag MAY be affected by the requirements
flag also associated with the member.

The abstract repeatability flag MUST be used only on the members of the abstract
superclass template.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 25

ASC X12

- WORKING DRAFT -

3.2.10 Slot Detail Flag
The slot detail flag indicates if the slot is part of the detail section of the template.
All modules that fill slots with the slot detail flag set to detail will repeat as a group

If the member is not part of the detail section the value of the slot detail flag MAY
have no value.

The value of the slot detail flag MUST be one of the following values:

D = Detail, the member is part of the detail section

The slot detail flag MUST only be used on the members of the abstract superclass
template.

3.2.11 Context Category
The context category indicates the business context as defined in the CCTS as
defined in section 6.2.2 of the ebXML Core Components Technical Specification.

As defined in the CCTS, there are three (3) pieces of information necessary to
specify the Context, the Context Category, the Context Category Identification
Scheme, and the Context Identifier Value.

3.2.11.1 The value of the context category MUST be one of the following
values:

BP = Business Process

PC = Product Classification

IC = Industry Classification

GP = Geopolitical

OC = Official Constraints

BR = Business Process Role

SR = Supporting Role

SC = System Capabilities

3.2.11.2 Context Category Identification
The name of the identification scheme as specified in section 6.6.2 of
the CTS {forward reference}.

This space contains the names of the identification schemes referenced
in the CCTS {reference}. However, some of the context categories do
not identify identification schemes, so those Context Categories with
specified identification schemes are listed below, those without defined
identification schemes are indicated with the wild card asterisk.

"UN/CEFACT Catalogue of Common Business Processes"

"Universal Standard Product and Service Specification (UNSPSC)"

"Standard International Trade Classification (SITC Rev .3)"

"Harmonized Commodity Description and Coding System (HS)"

"Classification Of the purposes of non Profit Institutions serving
households (COPI)"

"International Standard Industrial Classification (ISIC)"

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 26

ASC X12

- WORKING DRAFT -

"Universal Standard Product and Service Specification (UNSPSC)
Global"

"ISO 3166"

"UN/EDIFACT Code List for DE 3035 Party Roles"

*

3.2.11.3 Context Category Identifier Value
The value within the identification scheme that specifies the aspect of
Context.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 27

ASC X12

- WORKING DRAFT -

Part II: CICA Constructs

4 Core Component Type [CCT]

4.1 CCT – Definition
Core Component Type (CCT) is defined within the Core Components Technical
Specification (CCTS). The CCT is the base of CICA and used in its entirety within the
architecture. A CCT consists a single content component that carries the actual content
plus one or more supplementary components that give extra definition to the content
component. Core Component Types do not have business semantics.

For example, the CCT of Amount.type, the content component carries the value of 12. This
value has no meaning by itself. But if the supplementary component, dollars, is added the
CCT does have real semantic meaning.

The core component types are finite in quantity and are specifically defined in this Design
Rules document.

4.2 CCT – Content
CICA utilizes the CCTS listing of CCTs. Each CCT contains a single value CCTC, where
the actual business information is stored. In addition, one or more supplementary CCTCs
are defined for each CCT. The table is as follows:

CCT
Dictionary
Entry Name

Definition Remarks CCTC Components

Amount.
Type

A number of
monetary units
specified in a
currency where
the unit of
currency is
explicit or
implied.

• Amount. Content

• Amount Currency. Identifier

• Amount Currency. Code List
Version. Identifier

Binary
Object.
Type

A set of finite-
length
sequences of
binary octets.

Shall also be
used for Data
Types
representing
graphics (i.e.,
diagram, graph,
mathematical
curves or similar
representations),
pictures (i.e.
visual
representation of
a person, object,
or scene), sound,
video, etc.

• Binary Object. Content

• Binary Object. Format. Text

• Binary Object. Mime. Code

• Binary Object. Encoding. Code

• Binary Object. Character Set. Code

• Binary Object. Uniform Resource.
Identifier

• Binary Object. Filename. Text

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 28

ASC X12

- WORKING DRAFT -

CCT
Dictionary
Entry Name

Definition Remarks CCT Components

Code. Type A character
string (letters,
figures or
symbols) that
for brevity
and/or
language
independence
may be used to
represent or
replace a
definitive value
or text of an
Attribute
together with
relevant
supplementary
information.

Should not be
used if the
character string
identifies an
instance of an
Object Class or
an object in the
real world, in
which case the
Identifier. Type
should be used.

• Code. Content

• Code List. Identifier

• Code List. Agency. Identifier

• Code List. Agency Name. Text

• Code List. Name. Text

• Code List. Version. Identifier

• Code. Name. Text

• Language. Identifier

• Code List. Uniform Resource.
Identifier

• Code List Scheme. Uniform
Resource. Identifier

Date Time.
Type

A particular
point in the
progression of
time together
with relevant
supplementary
information.

Can be used for
a date and/or
time.

• Date Time. Content

• Date Time. Format. Text

Identifier.
Type

A character
string to identify
and distinguish
uniquely, one
instance of an
object in an
identification
scheme from all
other objects in
the same
scheme
together with
relevant
supplementary
information.

• Identifier. Content

• Identification Scheme. Identifier

• Identification Scheme. Name. Text

• Identification Scheme Agency.
Identifier

• Identification Scheme. Agency
Name. Text

• Identification Scheme. Version.
Identifier

• Identification Scheme Data. Uniform
Resource. Identifier

• Identification Scheme. Uniform
Resource. Identifier

Indicator.
Type

A list of two
mutually
exclusive
Boolean values
that express the
only possible
states of a
Property.

• Indicator. Content

• Indicator. Format. Text

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 29

ASC X12

- WORKING DRAFT -

Measure.
Type

A numeric
value
determined by
measuring an
object along
with the
specified unit of
measure.

• Measure. Content

• Measure Unit. Code

• Measure Unit. Code List Version.
Identifier

CCT
Dictionary
Entry Name

Definition Remarks CCT Components

Numeric.
Type

Numeric
information that
is assigned or
is determined
by calculation,
counting, or
sequencing. It
does not
require a unit of
quantity or unit
of measure.

May or may not
be decimal

• Numeric. Content

• Numeric. Format. Text

Quantity.
Type

A counted
number of non-
monetary units
possibly
including
fractions.

• Quantity. Content

• Quantity. Unit. Code

• Quantity Unit. Code List. Identifier

• Quantity Unit. Code List Agency.
Identifier

• Quantity Unit. Code List Agency
Name. Text

Text. Type A character
string (i.e. a
finite set of
characters)
generally in the
form of words
of a language.

Shall also be
used for names
(i.e. word or
phrase that
constitutes the
distinctive
designation of a
person, place,
thing or concept).

• Text. Content

• Language. Identifier

• �/DQJXDJH� /RFDOH� ,GHQWLILHU

4.3 CCT – Use
The CCT is used as the basis for deriving a set of CICA Primitives. The CCT is very
general, almost a data types, yet at a more semantic level. Therefore, the CCT acts as
semantic anchor point within the CICA architecture linking all usages and derivations

4.4 CCT – Examples
CCT for Amount: The content component is defined as a number of monetary units of a
particular currency. It is a specific value, for example 12. One supplementary component

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 30

ASC X12

- WORKING DRAFT -

indicates the currency, expressed as a 3-letter alphabetic code value (i.e. USD=U.S. dollars,
CAN=Canadian dollars). Another supplementary component identifies the version of the
code list of the currency codes, i.e. the publication that states the USD stands for U.S.
dollars, CAN stands for Canadian dollars, etc. Refer to the UN/CEFACT ebXML Core
Components Technical Specification, version 1.9.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 31

ASC X12

- WORKING DRAFT -

5 Primitives

5.1 Primitive – Definition
A Primitive describes a single discrete piece of information. It is the lowest level of CICA. It
is based on a single CCT. Each Primitive has one content component and zero or more
supplementary components. Each content and supplementary component may have a
number of restrictions placed with the primitive sub-class.

Multiple primitives may be derived from a single CCT.

A Primitive specifies a slightly more specific semantic purpose than that of the CCT, yet they
remain highly reusable. A Primitive is created starting with a specific CCT and deriving a set
of semantically specific usages for it. Primitives may be thought of as subclasses of core
component types.

5.2 Primitive – Content
A Primitive consists of a single CCT content component and zero or more CCT
supplementary components. To put this in object-oriented terms, each Primitive is a
subclass of the CCT and inherits from the CCT its list of CCT Components. The Primitive is
assigned a name different than the name of the CCT it derives from, reflecting its unique
semantic intent.

5.3 Primitive – Use
A Primitive is used as a member of Components and Blocks (higher level constructs).

5.4 Primitive – Examples
The following are examples of Primitives:

• Weight Measure

• Total Amount

• Party Identifier

• Net Quantity

5.5 Primitive – Design Rules

5.5.1 Semantic Rules:

• MUST be derived from a single Core Component Type (CCT).

• MAY be derived from the same Core Component Type as one or more other
Primitives.

• SHOULD represent a single, discrete piece of information.

• SHOULD represent a unique piece of information across all Primitives.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 32

ASC X12

- WORKING DRAFT -

5.5.2 Primitive Superclass Property Rules:
The primitive superclass MUST have the following characteristics:

5.5.2.1 Identifier
A primitive MUST have an identifier assigned by the X12 CICA
Database. The identifier MUST be unique across database.

5.5.2.2 Primitive Superclass Name
A primitive MUST have a logical English language name. (Example:
Name Text) The Primitive Name MUST be unique across all Primitives.
The Primitive Name MUST comply with the X12.7 naming conventions.

5.5.2.3 Primitive Description
A Primitive SHOULD have a description of the meaning and purpose of
the Primitive. Example: Free-form text that represent the name of a
Party.

5.5.2.4 Primitive Core Component Type
A primitive MUST identify a single Core Component Type (CCT) that is
based upon. Example: TextType

5.5.3 Primitive Subclass Property Rules:
The primitive subclass MUST have the following characteristics:

5.5.3.1 Primitive Subclass Name
A primitive MUST have a dictionary name for the primitive subclass.
The primitive subclass name MUST be formed by appending a two-digit
sequence number to the primitive superclass name.

5.5.3.2 Content Component Restriction
Each content component and supplementary component MUST be
assigned a specific W3C XML Schema Language (or XSD) data type,
and the allowable XSD restrictive facets supported by CICA restrictions
allowed on the primitive content component as defined in section 4.1.1
of X12.7

5.5.3.3 Content Component Restriction Value
Each content component and supplementary component identified
MUST have an appropriate value for the restrictive property

5.5.4 Primitive Usage Rules

• A primitive SHALL only be used as a member of a Block or a Component.

• When a primitive is used, it MUST be assigned a Usage Name.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 33

ASC X12

- WORKING DRAFT -

6 Components

6.1 Component – Definition
A Component fully expresses either an identity or characteristic for a higher-level construct.
They become a part of the definition of a Block, the next higher-level entity in the
architecture. Components are a collection of two (2) or more Primitives. Components
occupy the level above Primitives in the CICA architecture.

6.2 Component – Content
A Component is composed of two or more members, each of which is a Primitive. The term
“member set” refers to the list of members that make up the Component. Each Component
member is a Primitive and is uniquely defined by its usage name, not by the Primitive from
which it is derived. In object-oriented terms, each Component member is “derived” from a
Primitive.

6.3 Component – Use
A Component is used as a member of Blocks.

6.4 Component – Examples
The following examples are cases where a single identity or characteristic is conveyed by
more than one piece of information:

• Person Name - consists of First Name, Middle Name, Last Name

• Mailing Address – consists of Street Address, City, State, etc.

• Some Components may express a range of values for some object. A range specifies, in
some manner, a minimum value and a maximum value, and typically will be of the same
data type (i.e. dates, amounts, text, etc.).

Examples:

• Date Range - consists of Start Date and End Date.

• Price Range – consists of a Minimum Price and a Maximum Price.

• Product Code Range – consists of a Start Product Code and an End Product
Code (i.e. to restrict the list of products of interest by a range of code values).

Given the example:

C00001 Component Name: Person Name

Component XMLName: PersonName

 Component Description: The name of an individual person.

Pos PName Usage Name

01 NameText First Name

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 34

ASC X12

- WORKING DRAFT -

02 NameText Middle Name

03 NameText Last Name

• This Component’s member set consists of {First Name, Middle Name, Last Name}.

• Each of the following is a member of this Component: First Name, Middle Name, and Last
Name.

• Each member inherits from the Primitive NameText.

6.5 Component – Design Rules

6.5.1 Component Semantic Rules

• MUST consist of at least two Primitives.

• MAY consist of more than two Primitives.

• MUST have a unique member set across all Components, as defined by the
Usage Names.

• MAY have a member set that is a subset or superset of another Component’s
member set.

• MAY have more than one member that inherits from the same Primitive.

• MAY be used in one or more Blocks.

• MUST represent a specific identity or characteristic of an object.

• SHOULD represent a unique identity or characteristic across all Components.

• SHOULD have an abstract naming that is not specific to a single business
context.

6.5.2 Component Member Semantic Rules

• MUST inherit from a single Primitive (identified by Primitive ID/Name)

• MAY inherit from the same Primitive as another member.

• MUST have a unique Usage Name within the Component.

• MAY have the same Usage Name as a member of a different Component.

• SHOULD represent a single, discrete piece of information that is a subset of the
specific identity or characteristic represented by the Component as a whole.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 35

ASC X12

- WORKING DRAFT -

6.5.3 Component Superclass Property Rules

6.5.3.1 Component Superclass Name
A component MUST have a logical English language name. (Example:
Person Name) The component name MUST be unique across all
Components. The component name MUST comply with the X12.7
naming conventions.

6.5.3.2 Component Description
A component SHOULD have a description of the meaning and purpose
of the Component. Example: Full name of an individual person.

6.5.4 Component Member Properties

6.5.4.1 Component Member Usage Name
A component member MUST have a name that describes its usage
within the component. (Example: First Name) The component usage
MUST be unique within the Component.

6.5.4.2 Primitive Name
Name of the Primitive that this member inherits from. Example: Name

Only filled in when used in Module [subclass properties]

6.5.5 Subclass Component Properties

6.5.5.1 Component Subclass Name
The dictionary name of the component subclass. The name SHALL be
formed by appending a two-digit sequence number to the superclass
component name.

6.5.5.2 Component Subclass XML Name
The name of the complex type that represents the component concrete
subclass. The name is formed by appending a two-digit sequence
number to the name of the parent abstract superclass component.

6.5.6 Subclass Component Member Properties

6.5.6.1 Primitive Subclass Name
Is as defined in section 4.1 on Primitive. MUST be the name of a
primitive subclass that is derived from the abstract superclass primitive
defined in the primitive abstract superclass member.

6.5.6.2 Requirements Flag
As defined in Section 2.2. Indicates the requirement restriction imposed
on the member of the block member constraint, that is, the
requirements on the presence of the member within the component-
subclass.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 36

ASC X12

- WORKING DRAFT -

6.5.6.3 Minimum Occurs
As defined in Section 2.2. Indicates the minimum number of
occurrences permitted for the block constraint member, that is, the
member within the component-subclass.

6.5.6.4 Maximum Occurs
As defined in Section 2.2. Indicates the maximum number of
occurrences permitted for the component constraint member, that is,
the member within the component-subclass.

6.5.6.5 Content Restriction Flag
As defined in Section 2.2. Indicates the content restriction applying to a
subset of primitive members within the component-subclass.

6.5.6.6 Primitive Subclass XML Name
The name of the complex Type that represents the primitive concrete
subclass. The name is formed by appending a two-digit sequence
number to the name of the parent abstract superclass primitive.

7 Blocks

7.1 Block - Definition
Blocks specify a single Party, Location, Resource or Event, in a semantically precise, yet
business context neutral manner. Blocks are semantically precise, because their
composition is specific for the type of noun being specified. Blocks are business context
neutral in that they specify a general noun, and are not specific to the specific noun. Blocks
occupy the next level above Components in the CICA architecture. Each Block, like any
noun, answers the questions ”who”, ”what”, ”where”, ”when”, or ”why”. The Block members
specify either Identity or Characteristic information that apply to this entity.

Blocks are context-neutral, that is, they are independent of a specific business use, and are
reusable in higher-level constructs.

Blocks play a pivotal role in CICA.

7.2 Block – Content
A Block is composed of one or more members, each of which specifies a particular Identity
or Characteristic of the Block. Each Block Member is either the use of a Component or a
Primitive. The Block Member is assigned a usage name.

Each Block Member is assigned a designator that indicates if it is required or optional. The
minimum and maximum number of occurrences for each Block member is also specified.
Detailed descriptions of these attributes are provided in the Attributes section.

7.3 Block – Use
A Block is used in two different places in CICA. First, sets of Blocks can be grouped
together to create larger neutral constructs – Assemblies. These constructs are useful for
creating related groupings of Blocks, such as when you need a Party with a Location. But,
these are completely reusable and neutral, the same way Blocks are.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 37

ASC X12

- WORKING DRAFT -

Blocks are also used to construct Modules, which are context specific implementable
constructs.

As a standalone entity, a Block represents a logical grouping of related data items that can
be referenced and reused as a single entity.

But, when a Block is placed into a Module, either directly or via an Assembly containing the
Block, the Block takes on additional characteristics. The additional characteristics further
define or restrict the allowable data content. For example, a Block instance can specify
minimum and maximum lengths on individual data fields at the lowest level (i.e. Primitives),
and it can specify which Block members are required and how many times they may (or
must) occur. Some of the characteristics applied to the Block instance override those
established to the abstract Block, others are applied only at the Block instance and are not
part of the abstract Block definition.

From a Technical Perspective, a Block is an abstract super-class. Each Module use will
require certain properties be assigned [min length, max length, max repeat, etc.]. Each
different set of properties is a separate sub-class of the abstract super-class.

From a Business Perspective, when a Block is used in a Module, this is the point in time
when its specific business use in known. For example, a Person Party Block can be used to
create a Student module, in an education business context. Thus, a set of properties is
assigned to Block, and all of the Block Members, as deemed necessary for the specific
Student use. The next Block use, can either use the set of properties previously assigned,
or create a new set of properties.

7.4 Block – Examples
The following examples are cases where a Block would be used:

• Person – consists of a Person Name, Social Security Number, Height, Weight, Hair Color,
Eye Color, etc.

• Product – consists of a Product Identifier, Product Description, Product Class Code, etc.

• Location – consists of an address – Street Address, City, State, Postal Code, Country,
etc.

• Account – consists of Account Number, Account Type, Account Status, etc.

Given the example:

Block Name: Person Party

Block XMLName: Person Party

Block Type: Party

 Block Description: Describes an individual person.

Pos Prim/Comp Name Usage Name Use

01 Person Name Person Name I

02 IDNumber Social Security Number I

03 Description Hair Color C

• This Block’s member set consists of {Person Name, Social Security Number, and Hair
Color}.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 38

ASC X12

- WORKING DRAFT -

• Each member inherits from the Component or Primitive represented by the ID value and
Name indicated in the Member ID/Name column.

7.5 Block – Properties
The statements below define a Block. Note that the term “member set” refers to the list of
members that make up the Block. Each member in the set is uniquely defined by its Usage
Name (not by the Primitive or Component being used).

7.5.1 Block Semantic Rules

• MUST consist of at least one member.

• MAY consist of more than one member.

• MUST have a unique member set across all Blocks, as defined by the Usage
Names.

• MAY have a member set that is a subset or superset of another Block’s member
set.

• MAY have more than one member that is a usage of the same Primitive or
Component.

• MAY be used in one or more Assemblies.

• MAY be used in one or more Modules.

• MUST represent a specific Party, Resource, Location, or Event.

• MUST be business context neutral and independent of specific business use.

7.5.2 Block Member Semantic Rules

• MUST be a use of a single Component or Primitive (identified by Member
Name).

• MAY contain multiple usages of the same Component or Primitive, but each
instance must have a different Usage Name.

• MUST have a unique Usage Name within the Block.

• MAY have the same Usage Name as a member in a different Block.

• MUST be designated as either an Identity or Characteristic (see definition
below).

• MUST represent a single Identity or Characteristic of the entity the Block
represents.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 39

ASC X12

- WORKING DRAFT -

7.5.3 Block Property Rules, Abstract Superclass

7.5.3.1 BlockName
The logical/semantic name assigned to this Block. Example: Person
Party

• MUST be unique across all Blocks.

• Must be compliant with the naming conventions specified in X12.7.

7.5.3.2 BlockXMLName
The physical/syntactic name assigned this Block. Example:
PersonParty

• MUST be unique across all Blocks.

7.5.3.3 BlockType
Indicates the general type of this Block, for classification/reporting
purposes. Valid values are:

Party — describes a person, organization, or other entity; i.e. answers
a “who” question

Resource — describes a thing or object, i.e. answers a “what” question

Location — describes a place, i.e. answers a “where” question

Event — describes an event or activity, i.e. answers “when” and “what
happened” questions, can be associated with a particular occurrence of
some event, usually associated with a specific time or timeframe.

7.5.3.4 BlockDescription
Free-form text that describes the meaning and purpose of the Block.
Example: Describes an individual person.

7.5.4 Each Block Member Property Rules, Abstract Superclass:

7.5.4.1 Position
Sequential number that indicates the position of the member within the
Block. Example: 01 [Editor’s Note: Need to verify for consistency with
X12.7 for all references of ‘position]

7.5.4.2 Name
The name of the Component or Primitive that this member is derived
from. Examples: Person Name, Name

7.5.4.3 UsageName
The name assigned to this member that reflects its usage within the
Block. Example: Person Name.

7.5.4.4 XMLUsageName
The XML name that corresponds to the Usage Name above. Example:
PersonName

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 40

ASC X12

- WORKING DRAFT -

7.5.4.5 Use
Indicates if this member is an Identity or Characteristic. Valid values
are:

 I = Identity

 C = Characteristic

An Identity generally distinguishes one instance of this object from
another, and is frequently unique across the universe of objects,
although this is not a requirement. The entity may or may not follow a
given numbering scheme or format. Examples of Identity include the
following:

Block Type Block Name Identity Examples

Party Person Person Name, Social Security Num

Resource Product UPC Code

Location Property Parcel Number

Event Graduation Graduation Date

A Characteristic describes a particular quality or attribute of the object,
much like an adjective describes a particular quality or attribute of a
noun. Elements containing free-form text are more likely to be
classified as Characteristic rather than Identity, although this is not a
rule. Examples of Characteristic include the following:

Block Type Block Name Characteristic Examples

Party Person Eye Color

Resource Product Product Description

Location Property Property Description

Event Graduation Type of Degree (Attainment), i.e. Bachelor’s.

7.5.5 Block Subclass Properties

• <block-subclass name> - The dictionary name of the block subclass. The name
SHALL be formed by appending a two-digit sequence number to the superclass
<block_name>.

• <block-sublcass XML name> - The name of the complexType that represents
the block concrete subclass. The name is formed by appending a two-digit
sequence number to the name of the parent abstract superclass block.

7.5.6 Block Member Subclass Properties

• <subclass name> - Name of the Primitive or Component Subclass. MUST be
the name of a component subclass that is derived from the abstract superclass
component defined in the block abstract superclass member.

• <requirements flag> - As defined in Section 2,2. Indicates the requirement
restriction imposed on the member of the block member constraint, that is, the
requirements on the presence of the member within the block-subclass.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 41

ASC X12

- WORKING DRAFT -

• <min occurs> - As defined in Section 2.2. Indicates the minimum number of
occurrences permitted for the block constraint member, that is, the member
within the block-subclass.

• <max occurs> - As defined in Section 2.2. Indicates the maximum number of
occurrences permitted for the block constraint member, that is, the member
within the block-subclass.

• <content restriction flag> - As defined in Section 2.2. Indicates the content
restriction applying to a subset of component or primitive members within the
block-subclass.

• <usage XML name> - The name of the element representing the member
primitive or component as used within the block.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 42

ASC X12

- WORKING DRAFT -

8 Assemblies

8.1 Assembly - Definition
Assemblies occupy the next level above Blocks in the CICA architecture. An Assembly
represents a group of logically related party, resource, location, and/or event entities in a
business document. Each Assembly can be thought of as a group of nouns that forms a
reusable unit. Assemblies are context-neutral, that is, they are independent of a specific
business use, and are reusable within other Assemblies as well as within the next higher-
level construct – Modules.

There are three types of data relationships expressed by Assemblies:

• Consists-of: where the members operate together as a unit to create a larger reusable
grouping.

• Kinds-of: where the members are peers in that they perform the same role.

8.2 Assembly – Content
An Assembly is composed of one or more members, each of which specifies a sub-group of
the entire Assembly. Each Assembly member is associated with either another Assembly or
a Block - to put this in object-oriented terms, each Assembly member is “inherited” or
“derived” from an Assembly or a Block. The Assembly member is assigned a name, which
can be the same as, or different than the name of the object it inherits from. Typically it is
assigned a different name that reflects its specific usage; hence the term applied to the
name of the member is “Usage Name”.

Each member is assigned a designator that indicates if it is required, optional, or
“conditionally required”, i.e. depending on the existence of other members in the Assembly.
The minimum and maximum number of occurrences for each member is also specified.
Detailed descriptions of these attributes are provided in the Attributes section.

8.3 Assembly – Use
An Assembly is used as a member of other Assemblies and Modules, much the same way
Blocks and Assemblies are used as members of Assemblies. As a standalone entity, an
Assembly is abstract, i.e. it represents a logical grouping of related data items that can be
referenced and reused as a single entity.

But, when an Assembly is placed into a Module, the Assembly takes on additional
characteristics – in essence, a new instance of the abstract Assembly is created that fits the
requirements for the particular Module it is being used in. The additional characteristics
further define or restrict the allowable data content. For example, an Assembly instance can
specify which members are required and how many times they may (or must) occur. The
characteristics applied to the Assembly instance override those established to the abstract
Assembly.

8.4 Assembly - Examples
The following entities would be represented by an Assembly:

• Delivery Party – consists of a Person and Address.

• Product Status – consists of a Product and Quantity Information.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 43

ASC X12

- WORKING DRAFT -

• Patient Record – consists of a Person and Appointment Events

• Account History – consists of Account information and Transaction Events

• Contact Information – consists of contact information of various types – Phone, Email,
Mailing, etc. (each is a different entity (noun).

8.4.1 Assembly Semantic Design Rules
Assemblies may only be composed of the following

• Two-or-more Blocks

• Two-or-more Assemblies

• One-or-more Blocks and one-or-more other Assemblies

Assemblies are made up of two or more blocks and/or assemblies.

Assemblies are Neutral constructs; therefore their contents and naming are
abstract and industry independent.

There are two types of data relationships which exist which are expressed at the
Assembly level,

Consists-of where the children operate together as a unit to create a
larger reusable grouping. Examples include:

• A Person with a Location

• A Person with an Event

• A Location with an Event

Kinds-of where the children are peers in that they perform the same
role, Examples include:

• A set of ways to specify how to contact, phone number, fax number,
email, etc.

• A set of parties, one of which is performing a role, such as a person
or an organization, which has acted in a role. Specifically, this
applies in Healthcare where a Doctor or a Professional Corporation is
collecting payment.

8.4.2 An Assembly Member Semantic Rules

• MUST inherit from a single Assembly or Block (identified by ID).

• MAY inherit from the same Assembly or Block as another Member.

• MUST have a unique Usage Name within the Assembly.

• MAY have the same Usage Name as a member in a different Assembly.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 44

ASC X12

- WORKING DRAFT -

• MUST be designated as either Required, Optional, Any, or eXclusive-or (see
definition below).

• MUST be designated with a minimum and maximum number of occurrences.
The maximum number of occurrences MUST be equal to or greater than the
minimum number of occurrences.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 45

ASC X12

- WORKING DRAFT -

8.4.3 Assembly Superclass Properties

8.4.3.1 AssemblyName
The logical/semantic name assigned to this Block.

• Must be a semantically descriptive name for the Assembly.

• Shall be used as the primary means of identification of assemblies in
the DISA database.

• Shall be maintained as unique in the X12 XML standards
development process.

• MUST comply with naming conventions in X12.7.

8.4.3.2 AssemblyXMLName
The physical/syntactic name assigned this Assembly.

• MUST be unique.

• MUST comply with naming conventions in X12.7.

8.4.3.3 AssemblyDescription
Free-form text that describes the meaning and purpose of the
Assembly. Example: Describes the name and location of a person.

8.4.4 Assembly Superclass Member Properties

8.4.4.1 Name
The name of the Assembly or Block that this member is derived from.
Examples: Ship To, Person Party

8.4.4.2 UsageName
The name assigned to this member that reflects its usage within the
Assembly. Example: Ship To Party

8.4.4.3 XMLUsageName
The XML name that corresponds to the Usage Name above. Example:
ShipToParty

8.4.4.4 Assembly Type
Each Assembly is formed to specify information about a primary type of
information: Party, Resource, Event or Location. The Type of the first
member within the Assembly is typically the same as the
AssemblyType. [Editor’s Note: Need to verify for consistency with
X12.7]

P = Party

R = Resource

E = Event

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 46

ASC X12

- WORKING DRAFT -

L = Location

8.4.5 Assembly Subclass Properties

• <assembly-subclass name> - The dictionary name of the assembly subclass.
The name SHALL be formed by appending a two-digit sequence number to the
superclass <assembly_name>.

• <assembly-subclass XML name> - The name of the complexType that
represents the assembly concrete subclass. The name is formed by appending
a two-digit sequence number to the name of the parent abstract superclass
assembly, <assembly XML name>.

8.4.6 Assembly Subclass Member Properties

• For each Assembly member of the Assembly, <member assembly-subclass
name> - The <assembly-subclass name> of a concrete subclass that is a
member of the concrete subclass of the assembly. MUST be the name of a
concrete subclass of the abstract superclass named by <member assembly
name>.

• For each Block member of the Assembly, <block-subclass name> - MUST be
the name of a block subclass that is derived from the abstract superclass block
defined in the assembly abstract superclass member.

• <requirements flag> - As defined in Section 2.2.1 Indicates the requirement
restriction imposed on the member of the assembly member constraint, that is,
the requirements on the presence of the member within the assembly-subclass.

• <min occurs> - As defined in Section 2.2.2. Indicates the minimum number of
occurrences permitted for the assembly constraint member, that is, the member
within the assembly-subclass.

• <max occurs> - As defined in Section 2.2.3. Indicates the maximum number of
occurrences permitted for the assembly member constraint, that is, the member
within the assembly-subclass.

• <content restriction flag> - As defined in Section 2.2.4. Indicates the content
restriction applying to a subset of members within the assembly-subclass.

8.4.7 Assembly Design Guidelines
There are two types of data relationships that exist, which are expressed at the
Assembly level,

• Consists-of, where the children operate together as a unit to create a larger
reusable grouping. Examples include:

A Person with a Location

A Person with an Event

A Location with an Event

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 47

ASC X12

- WORKING DRAFT -

• Kinds-of, where the children are peers in that they perform the same role,
Examples include:

A set of ways to specify how to contact, phone number, fax number, email,
etc.

A set of parties, one of which is performing a role, such as a person or an
organization, which has acted in a role. Specifically, this applies in
Healthcare where a Doctor or a Professional Corporation is collecting
payment.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 48

ASC X12

- WORKING DRAFT -

9 Templates

9.1 Definition
A Template is a framework or skeleton of a business document for a particular business
process requirement. The business process determines the Template’s high-level
composition and use. The Template defines the general structure and content of a
business document, from which specific implementations of business documents are based.
For example, an Event Based Invoice Template is created for a specific business process
use of an Invoice. Its contents describe the general document used by parties to request
payment for goods and/or services. Specific Invoice documents are developed based on
that Invoice Template.

9.2 Content
A Template is composed of an ordered list of one or more members, called Slots. Slots are
named using neutral terms for the logical business purpose they identify, and act as
placeholders for Modules. A Template Slot is linked with a list of Modules, and each Module
is selected to use in the Slot, under different business conditions. A Document is built by
assigning a Module to each Template Slot.

A Template is divided into three sections:

• Header – applies to the entire business process and specifies the business context and
parties to the business exchange.

• Detail – contains a set of data relevant to the business process of the message.

• Summary – summarizes the information contained in the detail (use of this section is
generally discouraged).

9.3 Use
The Template provides a big picture view, of all the possible Modules used in each Slot.
This construct is a fundamental innovation in the CICA document assembly model. All
contextual uses of the Template can be viewed through this construct. The Template is
conceptually the focal point of the architecture, bridging between “neutral” constructs below
the line, and “implementable” constructs above the line, as shown in the figure below:

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 49

ASC X12

- WORKING DRAFT -

Figure 6. CICA Layers and Relationships

9.4 Examples
Templates can be created for the following general business documents:

• Event Invoice

• Bill of Lading

• Payment Request

If there is significant variation in the structure of a general business document, then multiple
Templates could be created to accommodate these. For example, there are many types of
Payment Requests, which can be categorized by the payment instrument to be used (ACH,
wire transfer, credit card, etc.). A separate Template could be created for each, i.e.

• ACH Payment Request

• Wire Payment Request

• Credit Card Payment Request

9.5 Design Rules - Template

9.5.1 Template Semantic Design Rules

• A Template MAY be assigned to zero or more Documents.

Assembly
Block

Component

Module Document

Neutral Line Neutral LineTemplate
e

Primitive

CCT

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 50

ASC X12

- WORKING DRAFT -

• A Template MUST be specified for each Document.

• A Template MUST consist of one or more logically ordered and named Slots.
These slots are reserved for Modules.

• New Templates can only be created when the business process specifies a new
condition. This determination is made based on preconditions, trigger event,
post conditions, and constraints.

• A Template MUST consist of one or more Slots, each of which is a member of
either the Header, Detail, or Summary area.

9.5.2 Template Member Semantic Design Rules

• The Header area consists of Slots that contain information that applies to the
entire business document and specifies the business context and parties to the
business exchange.

• The Detail area consists of one or more Slots that contain information that
describes the detail content of the message. The Slots in the Detail area may be
repeated as a unit in a Document, i.e. the unit as a whole represents a single
line item, and repeats for each line item in the message.

• The summary area consists of Slots that summarize information about the Detail
area.

• The Slots pertaining to each AREA must be together.

• Areas must be ordered, Header first, Detail second, Summary last.

• Each area in the Template MAY be defined to have zero or more Slots.

9.5.3 Semantic Design Rules

• Each named Slot within the Template SHALL fulfill a specific function in the
business process defined by the Template.

• Each named Slot SHALL, as its primary purpose, specify a single one of the
following as related to the business process being identified:

Who (party: person / organization),

What (resource: financial, product [tangible or service])

Where (place: physical location)

When (event: past / present/ future).

• A Slot, as defined by its Slot Name, MAY appear in multiple Templates.

• Each Slot within a Template MUST accommodate one or more Modules.

• Slots SHALL be named using a neutral term for the logical business process
they identify.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 51

ASC X12

- WORKING DRAFT -

• Each Slot within a Template SHALL have a name that is unique.

9.5.4 Superclass Properties Design Rules

9.5.4.1 TemplateName
The logical/semantic name assigned to the Template.

• It MUST be unique across all entities within the CICA Architecture.

9.5.4.2 TemplateXMLName
The physical/syntactic name assigned to the Template; it corresponds
to Name, above.

• It MUST be unique across all entities within the CICA Architecture.

• It MUST comply with the naming conventions in X12.7.

• It MAY have a “default value” mechanically generated by the CICA
Database Tool, which can be overridden.

9.5.4.3 TemplateDescription
Free-form text that describes the meaning and purpose of the
Template.

9.5.4.4 TemplateFamily
Indicates the general category the Template falls within; it is a way to
group “peer” Templates that cover the same general business purpose
but are required because the associated documents vary in structure.
For example, if separate Templates were needed for ACH Payment
Request, Wires Payment Request, and Credit Card Payment Request,
they would all be assigned the same Family of ‘Payment Request’.

9.5.4.5 BusinessProcess
Identifies of the Business Process to which this Template applies. The
ebXML catalog of Common Business Processes [version 1.0] is a
potential source. TAS will determine an initial set of values to choose
amongst.

9.5.4.6 BusinessProcessFamily
Identifies of the family of Business Processes to which this Template
applies. . TAS will determine an initial set of values to choose
amongst.

9.5.4.7 BusinessSubprocess
Identifies the sub process of the overall business process within which
this Template is used. For example, Event-Based Invoicing is a
subprocess of Invoicing. TAS will determine an initial set of values to
choose amongst.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 52

ASC X12

- WORKING DRAFT -

9.5.4.8 BusinessSubprocessFamily
Identifies a relationship amongst peer sub processes. For example if
Event Based Invoicing were a Business Sub process, then it would be a
member of the Invoicing family of subprocesses. TAS will determine an
initial set of values to choose amongst.

9.5.4.9 TriggeringEventDescription
This describes the event in the business process being served that
triggers the need to generate a message (Document) having this
Template. This description may also include the range of expected
responses to receipt of the generated message.

9.5.4.10 ResponsibleSubCommittee
Identifies the ASC-X12 Subcommittee with primary responsibility for
maintenance of this Template.

9.5.4.11 Context Category Value List
As defined in Section 2.2.11. Indicates the set of contexts in which the
template can be applied.

9.5.5 Superclass Member Properties Design Rules

9.5.5.1 SlotName
The name of the Slot within the Template. This term should be specific
to the general business process, and not specific to an industry. Must
conform with naming conventions

• It MUST be unique within the Template.

9.5.5.2 SlotXMLName
The physical/syntactic name assigned to the Slot; it corresponds to
Name, above.

• It MUST be unique within the Template.

• It MAY be the same as a Slot of a different Template.

• It MUST comply with the naming conventions in X12.7.

• It MAY have a “default value” mechanically generated by the CICA
Database Tool, which can be overridden.

9.5.5.3 SlotPurpose
Free-form text description describing the purpose of the Slot, from the
perspective of the business process. It is a description of the purpose
served by candidate Modules that fill the Slot.

9.5.5.4 SlotDetailFlag
Indicates which area in the Template the Slot belongs to.

H = Header

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 53

ASC X12

- WORKING DRAFT -

D = Detail

S = Summary

9.5.5.5 Abstract requirements flag
Indicates whether or not the Slot is required (mandatory) or optional.

It MUST be one of the following values:

M = Required

O = Optional

9.5.5.6 Abstract repeatability flag
As defined in Section 2.2. Indicates the repeatability restriction imposed
on the slot of the template, that is, if the slot can be repeated within the
template. This repeatability is independent of the detail repeating
aspect.

9.5.5.7 Context category value list
As defined in Section 2.11. Indicates the set of contexts in which the
template can be applied.

9.5.5.8 SlotModuleLinkage
The following identifiers must be supplied for each Module that can
occupy the Slot.

ModuleName – the name of the Module as defined in the CICA
Architecture. Must conform to the naming conventions in X12.7.

ModuleUsageName.

• MUST represent the logical/semantic name assigned to the
Module that reflects the Module’s usage within the Slot.

SHOULD be based on one of the following:

SlotName

ModuleName

Derived from the Module Name

EXAMPLE: If there were a general Template that could be used
in many business processes, such as REGISTRATION, it could
contain 3 Slots: Requestor, Registrar, and Registrant. The
REGISTRATION Template could be used to register Births,
Marriages, Students, or Toxic waste sites. When used in a
specific industry, the Module names would be much more
semantically descriptive than the Slot names, so the preference
would be to derive the ModuleUsageName from the Module
Name. Several similar Modules could exist, which are
essentially identical except for detailed properties [minimum

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 54

ASC X12

- WORKING DRAFT -

length, requirement designation, etc.], resulting in Modules
StudentA, StudentB and StudentC. Under these circumstances,
the ModuleUsageName of Student would not equal the
SlotName or the ModuleName, but rather would be derived from
the ModuleName.

• MUST be unique across all Slots in the Template.

• MAY be the same as a Module in a different Template.

ContextCategoryValue – provides for a list of context rules that
apply to the selection of this Module to occupy the Slot, as specified
in section 2.2.11. These could potentially be used by a rules engine
to programmatically determine which Module is appropriate for a
Document that addresses a given business process. At this time, no
such engine has been implemented; hence this entry is purely
informational.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 55

ASC X12

- WORKING DRAFT -

10 Modules

10.1 Module - Definition
A Module represents a set of context-specific, related data that serves a specific purpose in
a business document. Modules used within a specific business document satisfy the
objective of the business document. Because Modules are above the neutral line, they
always represent a detailed definition of the data, rather than an abstract definition.

10.2 Module – Content
A Module is composed of one or more members, each of which specifies a sub-group of the
entire Module. Each Module member is derived from either an Assembly or a Block, i.e. the
Assembly or Block definition that contains the additional characteristics that further define or
restrict the allowable data content. This is because the Module is context-specific – above
the neutral line – and therefore requires a fully qualified Assembly or Block rather than an
abstract representation. To this point, each Module should be:

• Specific such that can be implemented without further qualification as to what each piece
of information means

• Concise such that further explanation is not required in order to determine what pieces of
information are used.

Each Module member is assigned a name that is different than the name of the object it is
derived from. The name reflects its specific usage; hence the term applied to the name of
the member is “Usage Name”.

Each Module member is assigned a designator that indicates if it is required, optional, and
another designator conditional usage, i.e. depending on the existence of other members in
the Module. The minimum and maximum number of occurrences for each member is also
specified. Detailed descriptions of these attributes are provided in the Syntactic Design
Rules.

10.3 Modules - Use
A Module occupies a Slot in a Template. A Module can be linked with multiple Templates
and therefore can be used in multiple Documents, providing that the specific definition and
characteristics of the Module apply in all cases.

10.4 Modules - Examples
The following are represented by a Module:

• Invoice Event – consists of invoice number, date, purchase order reference, and other
details relevant to a particular invoice, i.e. conveys basic “header” information of the
invoice.

• Buyer – consists of name, location, contact information, and other details relevant to the
buying party.

• Invoice Line Goods – consists of a product, units, and other details relevant to a line item
on an invoice, i.e. conveys the “detail” information of the invoice.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 56

ASC X12

- WORKING DRAFT -

10.4.1 Module – Design Rules
The statements below define a Module. Note that the term “member set” refers to
the list of members that make up the Module. Each member in the set is uniquely
defined by its Usage Name (not by the Block or Assembly from which it is derived).

10.4.2 Semantic Design Rules

10.4.2.1 A Module

• MUST consist of at least one member.

• MAY consist of more than one member.

• MUST have a unique member set across all Modules, as defined by
the Usage Names.

• MAY have a member set that is a subset or superset of another
Module’s member set.

• MAY have more than one member that inherits from the same
Assembly or Block.

• MAY be designated to fill one or more Slots within a single Template
or multiple Templates.

• MUST be a semantically unique entity of in terms of composition.

• MUST answer a specific semantic question within the business
process (e.g., Who/What/When/Where/Why).

• MUST conform to the purpose of the Slot(s) in which it will be used.

• MAY be reusable within a business process and across business
processes.

• MUST be specific such that further qualification is not required as to
what each piece of information means.

• MUST be concise such that further explanation is not required in
order to determine which pieces of information are used.

10.4.2.2 A Module Member

• MUST be derived only from an Assembly or a Block.

• MAY be derived from the same Assembly or Block as another
Member within the same Module.

• MUST have a unique Usage Name within the Module.

• MAY have the same Usage Name as a member in a different
Module.

• MUST be designated as either Required or Optional.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 57

ASC X12

- WORKING DRAFT -

• MUST be designated with a minimum and maximum number of
occurrences.

• MAY have a maximum number of occurrences that is “unbounded”,
meaning an unlimited number.

• MUST have a maximum number of occurrences that is equal to or
greater than the minimum number of occurrences (unbounded is
considered to be greater than or equal to any finite value).

10.4.3 Syntactic Design Rules
A Module is defined by the following:

10.4.3.1 ModuleName.

• MUST be semantically descriptive.

• MUST uniquely identify the Module in the CICA database.

• MUST be unique across the entire CICA database (i.e. all levels).

• MUST conform to naming conventions defined in X12.7.

10.4.3.2 ModuleDescription.

• MUST be a text paragraph describing the use, intent and overall use
of the Module.

10.4.3.3 Module Type

• MUST indicate which primary classification of information this Module
conveys: Party, Resource, Event or Location. The Type of the first
member within the Module is typically the same Type as the Module
Type. [Editor’s Note: Need to verify for consistency with X12.7 for all
references of ‘Module Class’]

10.4.3.4 ResponsibleSubCommittee.

• MUST designate the ASC X12 Subcommittee with primary
responsibility for maintenance.

10.4.3.5 ContextCategoryValue
Provides for a list of context rules that apply to the selection of this
Module, as specified in section 2.2.11.

A Module Member is defined by the following:

10.4.3.6 UsageName.

• MUST be unique within the Module. (redundant with Semantic rules)

• MUST be semantically descriptive of how the member is being used
in the Module.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 58

ASC X12

- WORKING DRAFT -

• MUST conform to the naming conventions in X12.7.

10.4.3.7 AssemblyorBlock.

• MUST be A or B to specify whether the member is an Assembly or a
Block.

10.4.3.8 RequirementsFlag.
As defined in Section 2.2. Indicates the requirement restriction imposed
on the member of the module member constraint, that is, the
requirements on the presence of the member within the module
concrete subclass.

10.4.3.9 MinOccurs.
As defined in Section 2.2. Indicates the minimum number of
occurrences permitted for the module constraint member, that is, the
member within the module concrete subclass.

10.4.3.10 MaxOccurs.
As defined in Section 2.2. Indicates the maximum number of
occurrences permitted for the module constraint member, that is, the
member within the module concrete subclass.

10.4.3.11 Content restriction flag
As defined in Section 2.2. Indicates the content restriction applying to a
subset of block or assembly members within the module.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 59

ASC X12

- WORKING DRAFT -

11 Documents

11.1 Definition
A Document is a distinct, detailed message specification that is reflective of a context-
specific business process. A Document is derived from a Template and its Slots, with
context specific Modules occupying each Slot. A Document is defined by starting with a
Template and for each Slot in the Template, selecting the single Module that is required for
that particular Document.

11.2 Content
A Document is composed of the specific Modules that have been designated to fill each Slot
in the Template that has been assigned to the Document.

11.3 Use
A Document definition is the complete specification of the message. From the Document,
syntax specific representations are generated --- such as XML.

11.4 Examples
The following examples represent Documents:

• Delivery-Based Goods Invoice

• Statement-Based Service Invoice

• ACH Payment Request

11.5 Design Rules – Document

11.5.1 Semantic Design Rules
A Document :

• MUST represent an exchange of data that fulfills a single purpose in a business
process.

• MUST contain a specific semantically complete definition.

• MUST be composed of:

A link to a specific Template.

A link to a specific Module for every Slot in the Template, made from the
choices among the candidate Modules for each Slot in the Template.

A set of context references that drove the Module choices.

MUST conform to naming conventions defined in 4.10.

A Document Member:

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 60

ASC X12

- WORKING DRAFT -

• MUST be a specific Module must be designated to fill the Slot in the Template
that is assigned to the Document.

• MUST fulfill a specific function in the business process defined by the
Document.

A Module, as defined by its Module Name, may appear in multiple Documents.

11.5.2 Syntactic Design Rules
A Document is defined by the following:

11.5.2.1 DocumentName.

• MUST represent the logical/semantic name assigned to the
Document.

• MUST be unique across all entities within the CICA Architecture.

• MUST conform to naming conventions defined in X12.7

11.5.2.2 DocumentXMLName.

• MUST represent the physical/syntactic name assigned to the
Document; it corresponds to DocumentName, above.

• MUST be unique across all entities within the CICA Architecture.

• MUST comply with the naming conventions in X12.7.

• MAY have a “default value” mechanically generated by the CICA
Database Tool, which can be overridden.

11.5.2.3 DocumentDescription.
[Editor’s Note: Need to verify for consistency with X12.7]

• MUST be free-form text that describes the meaning, use, and overall
purpose of the Document.

11.5.2.4 DetailMaxOccurs.
[Editor’s Note: Need to verify for consistency with X12.7]

• MUST indicate the maximum number of times the Detail Area can
repeat.

• MUST be equal to the corresponding value in the specified Template,
or a “hardening” of it (e.g., unbounded in the Template, and 25 here).

11.5.2.5 ResponsibleSubCommittee.

• MUST designate the ASC X12 Subcommittee with primary
responsibility for maintenance

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 61

ASC X12

- WORKING DRAFT -

11.5.2.6 ContextCategoryValue
Provides for a list of context rules that apply to the selection of this
Document [a Template with a selected collection of Modules], as
specified in section 2.2.11.

Document Member is defined by the following:

11.5.2.7 DocumentSlot.

• MUST be the same as the SlotName in the specified Template.

11.5.2.8 ModuleSlotXMLName.

• MUST represent the physical/syntactic name assigned to the Slot
within this Document.

• It MUST be unique across all Slots within the Document.

• It MAY be the same as a Slot in a different Document.

• It MUST comply with the naming conventions in X12.7.

11.5.2.9 ModuleName.

• MUST indicate the name of the Module designated to fill the Slot, as
defined in the CICA Architecture.

11.5.2.10 ModuleUsageName.

• MUST represent the logical/semantic name assigned to the Module
that reflects the Module’s usage within the Slot.

SHOULD be based on one of the following:

SlotName

ModuleName

Derived from the Module Name

EXAMPLE: If there were a general Template that could be used in
many business processes, such as REGISTRATION, it could contain
3 Slots: Requestor, Registrar, and Registrant. The REGISTRATION
Template could be used to register Births, Marriages, Students, or
Toxic waste sites. When used in a specific industry, the Module
names would be much more semantically descriptive than the Slot
names, so the preference would be to derive the ModuleUsageName
from the Module Name. Several similar Modules could exist, which
are essentially identical except for detailed properties [minimum
length, requirement designation, etc.], resulting in Modules StudentA,
StudentB and StudentC. Under these circumstances, the
ModuleUsageName of Student would not equal the SlotName nor the
ModuleName, but would be derived from the ModuleName.

• MUST be unique across all Slots in the Document.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 62

ASC X12

- WORKING DRAFT -

• MAY be the same as a Module in a different Document.

11.5.2.11 ContextCategory

11.5.2.12 ContextCategoryValue
Provides for a list of context rules that apply to the selection of this
Module within the Document, as specified in section 2.2.11.

11.5.2.13 ReqDesignator.

• MUST indicate whether or not the Module is required (mandatory), or
optional. This value overrides the corresponding value defined for the
Slot in the Template.

• MUST be either R for Required, or O for Optional.

• MAY be the same as the defined for the Slot in the Template, or may
be a “hardening” of it, i.e. Optional in the Template, and Required in
the Document.

• MUST be compatible with the MinOccurs and MaxOccurs values
for this member.

11.5.2.14 MinOccurs.

• MUST indicate the minimum number of times this Module may repeat
in this Slot of the Document. If the Module is in a Slot is in the Detail
area, this represents the minimum number of times the Module may
repeat within each occurrence/iteration of the entire Detail area. This
value overrides the corresponding value defined for the Slot in the
Template.

• MUST be equal to the corresponding value for the Slot in the
associated Template, or a “hardening” of it - it must be equal to or
greater than the value in the Template, i.e. 1 in the Template, and 2
in the Document.

• It MUST be a positive integer, i.e. equal to or greater than zero.

• It MUST be compatible with the ReqDesignator , i.e. if Optional,
MinOccurs should be zero, if Required, MinOccurs should be one
or greater.

11.5.2.15 MaxOccurs.

• MUST indicate the maximum number of times this Module may
repeat in this Slot of the Document. If the Modules is in a Slot is in
the Detail area, this represents the maximum number of times the
Module may repeat within each occurrence/iteration of the entire
Detail area. This value overrides the corresponding value defined for
the Slot in the Template.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 63

ASC X12

- WORKING DRAFT -

• MUST be equal to the corresponding value for the Slot in the
associated Template, or a “hardening” of it, i.e. unbounded in the
Template, and 10 in the Document.

• MUST be either unbounded or a positive integer, and equal to or
greater than the MinOccurs value.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 64

ASC X12

- WORKING DRAFT -

APPENDIX A: CORE COMPONENTS CONTEXT
CATEGORIES
In keeping with ASC X12's goal to align with the ebXML Core Components work, the following table and
descriptive text are reproduced from Section 6.2.2 of the UN/CEFACT – ebXML Core Components
Technical Specification, Part 1 (8 February 2002, Version 1.8). The UN/CEFACT – ebXML Core
Components Technical Specification is copyrighted by UN/CEFACT and these excerpts are reproduced
with that body’s permission.

Copyright © UN/CEFACT 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the copyright notice or references to UN/CEFACT
except as required to translate it into languages other than English.

Note: The URL for the full document is

http://www.unece.org/cefact/ebxml/ebXML_CCTS_Part1_V1-9.pdf

A comprehensive list of values must be specified for each context category. The ebXML CC specification
has identified one or more available sources for each category. X12 plans to identify an "X12 selection"
for the context categories that have multiple resources.

Approved Context Categories

Table 1 contains the eight approved Context Categories.

• When describing a specific Business Context, a set of values will be assigned to the business situation
being formally described.

• Applied Business Context will be from the list of approved context categories.

Table 1. Approved Context Categories

Business Process The business process as described using the ebXML Catalogue of
Common Business Processes as extended by the user.

Product Classification Factors influencing semantics that are the result of the goods or services
being exchanged, handled, or paid for, etc. (e.g. the buying of consulting
services as opposed to materials)

Industry Classification Semantic influences related to the industry or industries of the trading
partners (e.g., product identification schemes used in different industries).

Geopolitical Geographical factors that influence business semantics (e.g., the structure
of an address).

Official Constraints Legal and governmental influences on semantics (e.g. hazardous materials
information required by law when shipping goods).

Business Process Role The actors conducting a particular business process, as identified in the
Catalogue of Common Business Processes.

Supporting Role Semantic influences related to non-partner roles (e.g., data required by a
third-party shipper in an order response going from seller to buyer.)

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 65

ASC X12

- WORKING DRAFT -

System Capabilities This context category exists to capture the limitations of systems (e.g. an
existing back office can only support an address in a certain form).

Business Process Context

In describing a business situation, generally the most important aspect of that situation is the business
activity being conducted. Business Process Context provides a way to unambiguously identify the
business activity. To ensure consistency with business process activities, it is important to use a common
point of reference. The definitive point of reference for international standards is the UN/CEFACT
Catalogue of Common Business Processes

• Assigned Business Process Contexts shall be from the standard hierarchical classification: provided as
part of the UN/CEFACT Catalogue of Common Business Processes.

• Business Process Context values may be expressed as a single business process at any level, or may
be expressed as a set of business processes at any level.

• Business Process Context values may be taken from extensions to the business processes described
in the Catalogue of Common Business Processes as provided for in that document.

• When business process extensions are used, they shall include full information for each value sufficient
to unambiguously identify which extension is providing the value used.

Product Classification Context

The Product Classification Context describes those aspects of a business situation related to the goods
or services being exchanged by, or otherwise manipulated, or concerned, in the business process.
Recognised code lists exist that provide authoritative sources of product classification contexts.

• A single value or set of values may be used in a Product Classification Context.

• If a hierarchical system of values is used for Product Classification Context, then these values may be
at any level of the hierarchy.

• If more than one classification system is being employed, an additional value specifying which
classification scheme has supplied the values used shall be conveyed.

• Product classification context code values shall be taken from recognized code lists to include:

− Universal Standard Product and Service Specification (UNSPSC)

• Custodian: Electronic Commerce Code Management Association (ECCMA)

− Standard International Trade Classification (SITC Rev .3)

• Custodian: United Nations Statistics Division (UNSD)

− Harmonised Commodity Description and Coding System (HS)

• Custodian: World Trade Organization (WTO)

− Classification Of the purposes of non Profit Institutions serving households (COPI)

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 66

ASC X12

- WORKING DRAFT -

• Custodian: UNSD (This provides a mapping between the first three.)

Industry Classification Context

The Industry Classification Context provides a description of the industry or sub-industry in which the
business process takes place.

• An Industry Classification Context may contain a single value or set of values at any appropriate level
of the value hierarchy.

• The Industry Classification Context value hierarchy must be identified.

• Industry Classification Context code values shall be taken from recognised code lists to include:

− International Standard Industrial Classification (ISIC) -- Custodian: UNSD

− Universal Standard Product and Service Specification (UNSPSC) Top-level Segment [digits 1 and 2]
used to define industry. --Custodian: ECCMA

NOTE
There are many other industry classification schemes that may be used for Industry Classification
Context.

Geopolitical Context

Geopolitical Contexts allow description of those aspects of the business context that are related to region,
nationality, or geographically based cultural factors.

• Geopolitical Context shall consist of appropriate continent, economic region, country, and region
identifiers.

• Geopolitical Regional Classification may associate one or more values with any business message or
component. are related to region, nationality, or geographically based cultural factors. country, and
region identifiers. any business message or component.

• Geopolitical Regional Classification shall employ the following hierarchical structure:
Global
 [Continent]
 [Economic Region]
 [Country] - ISO 3166.1
 [Region] - ISO 3166.2

• At any level of the Geopolitical Regional Classification hierarchy, a value may be a single value, a
named aggregate, or cross-border value.

• Geopolitical Regional Classification hierarchy values shall structured as follows:

− Single Value: A single value indicating a single continent, economic region, country, or region,
depending on position within the hierarchy.

− Named Aggregate: A related group of values (which may themselves be single values, named
aggregates, or cross-border pairs of values), which have been related and assigned a name. A
named aggregate contains at least two values.

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 67

ASC X12

- WORKING DRAFT -

− Cross-Border: One or more pairs of values, designated To, From, or Bi- directional, indicating the
direction of cross-border context. Values may be named aggregates or single values.

EXAMPLE
The following example shows an extract of the basic, single-value hierarchy of recommended values,
based on the common ISO 3166.1 Country Codes. (The value at the top of any hierarchy is always
understood to be Global.)

Europe
 Eastern Europe
 AL – ALBANIA
 AM – ARMENIA

• Points in the Geopolitical Regional Classification hierarchy shall be specified by the use of the node
value, or by the full or partial path.

• The full path of the Geopolitical Regional Classification hierarchy must be used to understand the
hierarchy when complex constructs are employed.

• A single-point specification is understood to inherit all of the properties of the single-value hierarchy
except where otherwise specified.

• Geopolitical Values will be taken from ISO 3166.1 and 3166.2

Official Constraints Context

The Official Constraints Context category describes those aspects of the business situation that result
from legal or regulatory requirements and similar official categories. This category contains two distinct
parts:

− Regulatory and Legislative. These are normally unilateral in nature and include such things as
customs.

− Conventions and Treaties. These are normally bi- or multilateral agreements and as such are
different from regulatory and legislative constraints.

• The Official Constraints Context will consist of at least two values:

− Identification of the legal or other classification used to identify the context values.

− Identification of the official constraint itself. These values may represent a hierarchical structure
depending on the official constraints system being referenced.

Because there is no known global classification of all Official Constraints Contexts as used here, any
implementation must provide a set of recognised official constraints classifications for use within the
appropriate Core Components Registry implementation.

• Individual Core Component implementations shall register used official constraint classification
schemes with the appropriate supporting Core Components Registry implementation.

Business Process Role Context

The Business Process Role Context describes those aspects of a business situation that are specific to
an actor or actors within the business process. Its values are taken from the set of Role values provided

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 68

ASC X12

- WORKING DRAFT -

by the Catalogue of Common Business Processes. A Business Process Role Context is specified by
using a value or set of values from this source.

• Business Process Role Context values shall be taken from an approved list provided by the business
process model library being employed.

• The UN/CEFACT Catalogue of Common Business Processes shall be the definitive source of Business
Process Role Context values for all UN/CEFACT Business Information Entities.

Supporting Role Context

The Supporting Role Context identifies those parties that are not active participants in the business
process being conducted but who are interested in it. A Supporting Role Context is specified with a value
or set of values from a standard classification.

• Supporting Role Context values shall be taken from the UN/EDIFACT Code List for DE 3035 Party
Roles.

NOTE
Users are cautioned that duplication exists in the current version of the required code list. UN/CEFACT
will review this code list to clarify duplicates and identify non- Supporting Role Context values.

System Capabilities Context

This category identifies a system, a class of systems or standard in the business situation. The System
Capabilities Context requires a least one pair of values: an identification of the classification scheme
being used and a value from that scheme. A valid System Capabilities Context may include more than
one such pair of values.

• Systems Capabilities Context values shall consist of pairs of values. Each pair shall be comprised of an
identification of the referenced classification scheme and the value(s) being employed.

NOTE
There is no known classification of all types of information systems and standards. It is recommended that
a mechanism for the registration of system and standard names be provided by the ebXML registry, as
valid values for the System Capabilities Context.

Table 2. Permissible Representation Terms

Representation
Term

Definition Links to Core
Component Type

Amount A number of monetary units specified in a currency where the
unit of currency is explicit or implied.

Amount. Type

Code A character string (letters, figures or symbols) that for brevity
and / or language independence may be used to represent or
replace a definitive value or text of an attribute. Codes usually
are maintained in code lists per attribute type (e.g. colour).

Code. Type

Date A day within a particular calendar year (ISO 8601). Date Time. Type

Date Time A particular point in the progression of time (ISO 8601). Date Time. Type

Graphic A diagram, graph, mathematical curves, or similar
representation

Graphic. Type

Identifier A character string used to establish the identity of, and Identifier. Type

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 69

ASC X12

- WORKING DRAFT -

distinguish uniquely, one instance of an object within an
identification scheme from all other objects within the same
scheme.

[Note: Type shall not be used when a person or an object is
identified by its name. In this case the Representation Term
“Name” shall be used.]

Indicator A list of two, and only two, values that indicate a condition
such as on/off; true/false etc. (synonym: “Boolean”).

Indicator. Type

Measure A numeric value determined by measuring an object.
Measures are specified with a unit of measure. The applicable
unit of measure is taken from UN/ECE Rec. 20.

Measure. Type

Name A word or phrase that constitutes the distinctive designation of
a person, place, thing or concept.

Text. Type

Percent A rate expressed in hundredths between two values that have
the same unit of measure.

Numeric. Type

Picture A visual representation of a person, object, or scene Picture. Type

Quantity A number of non-monetary units. It is associated with the
indication of objects. Quantities need to be specified with a
unit of quantity.

Quantity. Type

Rate A quantity or amount measured with respect to another
measured quantity or amount, or a fixed or appropriate
charge, cost or value e.g. US Dollars per hour, US Dollars per
Euro, kilometre per litre, etc.

Numeric. Type

Text A character string generally in the form of words of a
language.

Text. Type

Time The time within a (not specified) day (ISO 8601). Date Time. Type

Value Numeric information that is assigned or is determined by
calculation, counting or sequencing. It does not require a unit
of quantity or a unit of measure

Numeric. Type

In addition to permissible representation terms for Core Components, there are also permissible
representation terms for Aggregate Core Components and Core Component Types. Table 3 contains the
permissible representation terms that apply to Aggregate Core Components or Core Component Types.

• The Representation Term for Aggregate Core Components or Core Component Types shall be one of
the list of permissible Aggregate Core components or Core Component Type Representation Terms

Table 3. Permissible Representation Terms for Aggregate Core Components or Core Component Types

Representation
Term

Definition Links to Core
Component Type

Details The expression of the aggregation of Core Components to
indicate higher leveled information entities

Not Applicable

Type The expression of the aggregation of Core Components to
indicate the aggregation of lower leveled information entities to
become Core Component Types. All Core Component Types
shall use this Representation Term

Not Applicable

Content The actual content of an information entity.

Content is the first information entity in a Core Component

Used with the
Content

ASC X12.71 • RELEASE • 2.01 D R A F T CICA • DESIGN RULES

MARCH 2004 D R A F T 70

ASC X12

- WORKING DRAFT -

Type Components of
Core Component
Types

